Python/OpenCL: Difference between revisions
< Python
Jump to navigation
Jump to search
| Line 6: | Line 6: | ||
| __global const long* data || | | __global const long* data || | ||
<source lang="python3"> | <source lang="python3"> | ||
cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=np.int64( | py_param = [1, 2, 3, 4, 5, 6] | ||
cl_param = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=np.int64(py_param)) | |||
</source> | </source> | ||
|- | |- | ||
Revision as of 09:40, 15 June 2018
PyOpenCL
Type Mapping
| Kernel parameter | Python |
|---|---|
| __global const long* data |
py_param = [1, 2, 3, 4, 5, 6]
cl_param = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=np.int64(py_param))
|
| __global long* data |
cl.Buffer(ctx, mf.READ_WRITE | mf.COPY_HOST_PTR, hostbuf=np.int64([1, 2, 3, 4, 5, 6]))
|
| __private long i |
np.int64(9999)
|
| OpenCL | Python Input | Python Output |
|---|---|---|
| float | np.float32 | np.float32 |
| double | np.float64 | np.float64 |
| int | np.int32 | np.int32 |
| long | np.int64 | np.int64 |
| char | b'...' | bytearray |
See Also:
Sample
import os
import numpy as np
import pyopencl as cl
# Kernel code.
CL_INC = '''
__kernel void inc_f32(__global const float *a_g, __global float *res_g)
{
int gid = get_global_id(0);
res_g[gid] = a_g[gid] + 1.0;
}
__kernel void inc_f64(__global const double *a_g, __global double *res_g)
{
int gid = get_global_id(0);
res_g[gid] = a_g[gid] + 1.0;
}
__kernel void inc_i32(__global const int *a_g, __global int *res_g)
{
int gid = get_global_id(0);
res_g[gid] = a_g[gid] + 1;
}
__kernel void inc_i64(__global const long *a_g, __global long *res_g)
{
int gid = get_global_id(0);
res_g[gid] = a_g[gid] + 1;
}
'''
# Build
os.environ['PYOPENCL_CTX'] = '0:1' # Apple > HD Graphics 4000 of Macbook Air 2012 mid
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)
mf = cl.mem_flags
prg = cl.Program(ctx, CL_INC).build()
# Shorthand to call kernel function.
def call_kernel(kernel_name, *args):
in_np = args[0]
out_np = np.empty_like(in_np)
in_cl = cl.Buffer(ctx, mf.READ_ONLY | mf.COPY_HOST_PTR, hostbuf=in_np)
out_cl = cl.Buffer(ctx, mf.WRITE_ONLY, in_np.nbytes)
getattr(prg, kernel_name)(queue, in_np.shape, None, in_cl, out_cl)
cl.enqueue_copy(queue, out_np, out_cl)
return out_np
# Test inc_f32()
in_np = np.array([1.0, 2.0, 3.0, 4.0, 5.0]).astype(np.float32)
out_np = call_kernel('inc_f32', in_np)
print('Results of inc_f32()')
print(in_np)
print(out_np)
print()
# Test inc_f64()
in_np = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
out_np = call_kernel('inc_f64', in_np)
print('Results of inc_f64()')
print(in_np)
print(out_np)
print()
# Test inc_i32()
in_np = np.array([1, 2, 3, 4, 5]).astype(np.int32)
out_np = call_kernel('inc_i32', in_np)
print('Results of inc_i32()')
print(in_np)
print(out_np)
print()
# Test inc_i64()
in_np = np.array([1, 2, 3, 4, 5])
out_np = call_kernel('inc_i64', in_np)
print('Results of inc_i64()')
print(in_np)
print(out_np)
print()
numpy
Data Types
import numpy as np
# Default int type is int64
a = np.array([1, 2, 3])
print(type(a[0]).__name__)
# Default float type is float64
b = np.array([1.0, 2.0, 3.0])
print(type(b[0]).__name__)
# Force int32
c = np.array([1, 2, 3]).astype(np.int32)
print(type(c[0]).__name__)
# Force float32
d = np.array([1.0, 2.0, 3.0]).astype(np.float32)
print(type(d[0]).__name__)